Hva slags matematisk funksjon er dette?

funksjoner er som matematiske maskiner som utfører operasjoner på en inngang for å produsere en utgang. Å vite hvilken type funksjon du har med å gjøre er like viktig som å jobbe problemet selv. Ligningene nedenfor er gruppert i henhold til deres funksjon. For hver ligning er fire mulige funksjoner listet opp, med riktig svar i fet skrift. For å presentere disse ligningene som en quiz eller eksamen, bare kopier dem til et tekstbehandlingsdokument og fjern forklaringer og fet skrift. Eller bruk dem som en guide for å hjelpe elevene til å gjennomgå funksjoner.

Lineære funksjoner

En lineær funksjon er en hvilken som helst funksjon som grafer til en rett linje, notater Study.com:

"Hva dette betyr matematisk er at funksjonen har enten en eller to variabler uten eksponenter eller krefter."

y - 12x = 5x + 8

A) Lineær
B) Kvadratisk
C) Trigonometrisk
D) Ikke en funksjon

y = 5

A) Absolutt verdi
B) Lineær
C) Trigonometrisk
D) Ikke en funksjon

Absolutt verdi refererer til hvor langt et tall er fra null, så det er alltid positivt, uavhengig av retning.

instagram viewer

y = |x - 7|

A) Lineær
B) Trigonometrisk
C) Absolutt verdi
D) Ikke en funksjon

Eksponentielt forfall beskriver prosessen med å redusere en mengde med en jevn prosentsats over en periode og kan uttrykkes med formelen y = a (1-b)x hvor y er det endelige beløpet, en er det opprinnelige beløpet, b er forfallsfaktoren, og x er tiden som har gått.

y = .25x

A) Eksponentiell vekst
B) Eksponentielt forfall
C) Lineær
D) Ikke en funksjon

trigonometriske

Trigonometriske funksjoner inkluderer vanligvis begreper som beskriver måling av vinkler og trekanter, for eksempel sinus, cosinusog tangent, som vanligvis forkortes henholdsvis synd, kos og solbrun.

y = 15sinx

A) Eksponentiell vekst
B) Trigonometrisk
C) Eksponentielt forfall
D) Ikke en funksjon

y = tanx

A) Trigonometrisk
B) Lineær
C) Absolutt verdi
D) Ikke en funksjon

Kvadratiske funksjoner er algebraiske ligninger som tar form: y = øks2 + bx + c, hvor en er ikke lik null. Kvadratiske ligninger brukes til å løse komplekse matematisk ligninger som prøver å evaluere manglende faktorer ved å plotte dem på en u-formet figur kalt en parabel, som er en visuell fremstilling av en kvadratisk formel.

y = -4x2 + 8x + 5

A) Kvadratisk
B) Eksponentiell vekst
C) Lineær
D) Ikke en funksjon

y = (x + 3)2

A) Eksponentiell vekst
B) Kvadratisk
C) Absolutt verdi
D) Ikke en funksjon

Eksponensiell vekst

Eksponentiell vekst er endringen som skjer når en original mengde økes med en jevn hastighet over en periode. Noen eksempler inkluderer verdiene til boligpriser eller investeringer samt økt medlemskap på et populært nettsted for sosiale nettverk.

y = 7x

A) Eksponentiell vekst
B) Eksponentielt forfall
C) Lineær
D) Ikke en funksjon

Ikke en funksjon

For at en ligning skal være en funksjon, må en verdi for inngangen bare gå til en verdi for utgangen. Med andre ord for alle x, ville du ha et unikt y. Ligningen nedenfor er ikke en funksjon fordi hvis du isolerer x på venstre side av ligningen er det to mulige verdier for y, en positiv verdi og en negativ verdi.

x2 + y2 = 25

A) Kvadratisk
B) Lineær
C) Eksponentiell vekst
D) Ikke en funksjon