I økonomi, kreve er forbrukerens behov eller ønske om å eie varer eller tjenester. Mange faktorer påvirker etterspørselen. I en ideell verden vil økonomer ha en måte å tegne etterspørsel mot alle disse faktorene på en gang. I virkeligheten er økonomer imidlertid begrenset til todimensjonale diagrammer, så de må velge et determinant for etterspørsel å tegne mot etterspurt antall.
Det er økonomer generelt enige om pris er den mest grunnleggende determinanten for etterspørselen. Med andre ord, pris er sannsynligvis det viktigste som folk vurderer når de bestemmer seg for om de kan kjøpe noe. Derfor viser etterspørselskurven forholdet mellom pris og mengde etterspurt.
I matematikk blir mengden på y-aksen (vertikal akse) referert til som den avhengige variabelen og mengden på x-aksen referert til som den uavhengige variabelen. Plasseringen av pris og kvantitet på aksene er imidlertid noe vilkårlig, og det skal ikke utledes at heller ikke en avhengig variabel er i streng forstand.
Konvensjonelt brukes en liten bokstav for å betegne individuell etterspørsel, og en stor bokstav Q brukes til å betegne markedets etterspørsel. Denne stevnen er ikke universell, så det er viktig å sjekke om du ser på individuell eller markedets etterspørsel. Det vil være etterspørsel i markedet i de fleste tilfeller.
Lov om etterspørsel sier at alt annet som er likt, mengden som etterspørres av en vare avtar når prisen øker, og omvendt. "Alt annet å være lik" er viktig her. Det betyr at individenes inntekter, prisene på beslektede varer, smak og så videre alle holdes konstant med bare prisen endrer seg.
De aller fleste varer og tjenester overholder kravet om lov, om ingen andre grunner enn færre kan kjøpe en vare når den blir dyrere. Grafisk betyr dette at etterspørselskurven har en negativ helling, noe som betyr at den skråner nedover og til høyre. Etterspørselskurven trenger ikke å være en rett linje, men den trekkes vanligvis slik for enkelhet.
Hvis du fremdeles er forvirret over hvorfor etterspørselskurven skråner nedover, kan det å gjøre poengene til en etterspørselskurve gjøre ting tydeligere.
I dette eksemplet, start med å plotte poengene i etterspørselsplanen til venstre. Med pris på y-aksen og mengde på x-aksen, plott ut punktene gitt pris og mengde. Deretter kobler du punktene. Du vil merke at skråningen går ned og til høyre.
I hovedsak dannes etterspørselskurver ved å plotte de aktuelle pris / mengdepar ved alle mulige prispunkter.
Siden helningen er definert som endringen i variabelen på y-aksen delt på endringen i variabelen på x-aksen tilsvarer helningen på etterspørselskurven prisendringen dividert med endringen i mengde.
For å beregne helningen på en etterspørselskurve, ta to punkter på kurven. Bruk for eksempel de to punktene som er merket i denne illustrasjonen. Mellom disse punktene er skråningen (4-8) / (4-2), eller -2. Legg igjen merke til at skråningen er negativ fordi kurven skrår nedover og til høyre.
En bevegelse fra et punkt til et annet langs den samme etterspørselskurven, som illustrert her, blir referert til som en "endring i etterspurt antall. "Endringer i etterspurt mengde er et resultat av prisendringer.
Etterspørselskurven kan også skrives algebraisk. Konvensjonen går ut på at etterspørselskurven skal skrives som mengde etterspurt som en funksjon av pris. Den inverse etterspørselskurven er derimot prisen som en funksjon av etterspurt mengde.
Disse ligningene tilsvarer etterspørselskurven vist tidligere. Når du får en ligning for en etterspørselskurve, er den enkleste måten å plotte det å fokusere på punktene som skjærer pris- og mengdeaksene. Poenget på kvantitetsaksen er der prisen tilsvarer null, eller hvor mengden som etterspørres tilsvarer 6-0, eller 6.
Poenget på prisaksen er hvor antallet som etterspørres tilsvarer null, eller der 0 = 6- (1/2) P. Dette skjer der P er lik 12. Fordi denne etterspørselskurven er en rett linje, kan du bare koble disse to punktene.
Du vil som oftest jobbe med den vanlige etterspørselskurven, men i noen få scenarier er den omvendte etterspørselskurven veldig nyttig. Det er ganske greit å veksle mellom etterspørselskurven og den inverse etterspørselskurven ved å løse algebraisk for ønsket variabel.