Hva er 5-tallsammendraget?

Det finnes en rekke beskrivende statistikker. Tall som middelverdien, median, modus, skjevhet, kurtose, standardavvik, første kvartil og tredje kvartil, for å nevne noen, hver forteller oss noe om dataene våre. Heller enn å se på disse beskrivende statistikk enkeltvis, noen ganger hjelper det å gi oss et komplett bilde ved å kombinere dem. Med dette mål for øye, er femsifersammendraget en praktisk måte å kombinere fem beskrivende statistikker på.

Hvilke fem tall?

Det er tydelig at det skal være fem tall i sammendraget vårt, men hvilke fem? Tallene som er valgt er for å hjelpe oss å kjenne til senteret for dataene våre, så vel som hvor spredte datapunktene er. Med dette i bakhodet består sammendraget av fem nummer av følgende:

  • Minimumet - dette er den minste verdien i datasettet vårt.
  • Den første kvartilen - dette tallet er angitt Q1 og 25% av dataene våre faller under den første kvartilen.
  • Median - dette er midtveispunktet i dataene. 50% av alle data faller under medianen.
  • Den tredje kvartilen - dette tallet er angitt Q3 og 75% av dataene våre faller under den tredje kvartilen.
  • instagram viewer
  • Det maksimale - dette er den største verdien i datasettet vårt.

Gjennomsnittet og standardavviket kan også brukes sammen for å formidle sentrum og spredningen av et sett med data. Imidlertid er begge disse statistikkene mottagelige for outliers. Median, første kvartil og tredje kvartil er ikke så sterkt påvirket av utliggere.

Et eksempel

Gitt følgende datasett, vil vi rapportere det fem tallsammendraget:

1, 2, 2, 3, 4, 6, 6, 7, 7, 7, 8, 11, 12, 15, 15, 15, 17, 17, 18, 20

Det er totalt tjue poeng i datasettet. Median er dermed gjennomsnittet av den tiende og ellevte datavurderingen eller:

(7 + 8)/2 = 7.5.

Median for den nedre halvdelen av dataene er den første kvartilen. Den nederste halvdelen er:

1, 2, 2, 3, 4, 6, 6, 7, 7, 7

Dermed beregner viQ1= (4 + 6)/2 = 5.

Median for den øvre halvdelen av det originale datasettet er den tredje kvartilen. Vi må finne medianen av:

8, 11, 12, 15, 15, 15, 17, 17, 18, 20

Dermed beregner viQ3= (15 + 15)/2 = 15.

Vi samler alle ovennevnte resultater sammen og rapporterer at det fem tallsammendraget for ovennevnte datasett er 1, 5, 7.5, 12, 20.

Grafisk representasjon

Fem talloppsummeringer kan sammenlignes med hverandre. Vi vil finne at to sett med lignende midler og standardavvik kan ha svært forskjellige fem talloppsummeringer. For å enkelt sammenligne to fem tallsammendrag på et øyeblikk, kan vi bruke a boxplot, eller boks og vispegraf.